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Abstract

The principal investigator, together with two post-doctoral fellows (David Mu-
raki and X Wang), several graduate students, and colleagues, has applied the
modern mathematical theory of nonlinear waves to problems in nonlinear optics.
Projects included (i) the interaction of laser light with nematic liquid crystals, (ii)
propagation through random nonlinear media, (ill) cross polarization instabilities
and optical shocks for propagation along nonlinear optical fibers, and (iv) the dy-
namics of bistable optical switches coupled through both diffusion and diffraction.
In project (i) the extremely strong nonlinear response of a cw laser beam in a
nematic liquid crystal medium produced striking undulation and filamentation of
the cw beam which was obscrved experimentally and explained theoretically. In
project (ii) the interaction of randomness with nonlinearity was investigated, as
well as an effective randomness due to the simultaneous presence of many nonlin-
ear instabilities. In the polarization problems of project (iii) theoretical hyperbolic
structure (instabilities and homoclinic orbits) in the coupled pdes was identified
and used to explain cross polarization instabilities in both the focusing and defo-
cusing cases, as well as to describe optical shocking phenomena. For the coupled
bistable optical switches of project (iv), a numerical code was carefully developed
in two spatial and one temporal dimensions. The code was used to study the de-
cay of temporal transients to "on-off" steady states in a geometry which includes
forward and backward longitudinal propagation, together with one dimensional
transverse coupling of both electromagnetic diffraction and carrier diffusion.
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1 Technical Report

Under this research grant, the modern mathematical theory of nonlinear waves has been
applied to problems in nonlinear optics. Projects include (i) the interaction of laser
light with nematic liquid crystals, (ii) propagation in random, nonlinear media, (iii)
cross polarization instabilities and optical shocks for propagation along nonlinear optical
fibers, (iv) the dynamics of bistable optical switches coupled through both diffusion and
diffraction.

Liquid crystals possess an eztremely strong coefficient of nonlinearity, a property
which has led our interdisciplinary group [McLaughlin, Muraki, and Wang (Program in
Applied and Computational Mathematics); Braun, Faucheux, and Libchaber (Depart-
ment of Physics); Shelley (Courant Institute)] to use this particular nonlinear medium
to study the basic physics of the interaction of light with matter. This group has used
experimental, mathematical, and numerical methods in its investigations. Specifically,
the extremely strong nonlinear response of a cw laser beam in a nematic liquid crystal
medium has produced striking undulation and filamentation of the cw beam which has
been observed experimentally and explained theoretically.

In project (ii), the interaction of randomness with nonlinearity was investigated nu-
merically and theoretically. Differences in the focusing and defocusing cases were em-
phasized

In the polarization problems of project(iii) theoretical hyperbolic structure (insta-
bilities and homoclinic orbits) in the coupled pdes has been identified and used to ex-
plain cross polarization instabilities in both the focusing and defocusing cases, as well
as to describe optical shocking phenomena. For the coupled bistable optical switches of
project(iv), a numerical code has been carefully developed in two spatial and one tem-
poral dimensions. The code has been used to study the decay of temporal transients to
"on-off" steady states in a geometry which includes forward and backward longitudinal
propagation, together with one dimensional transverse coupling of both electromagnetic
diffraction and carrier diffusion.

In the following, we describe these projects in more detail. A list of publications is
included.

1.1 Light Interacting with Nematic Liquid Crystals

The scientific importance of this laser light -liquid crystal study arises from its extremely
large coefficient of nonlinearity which enables one to investigate strong nonlinear effects
with low power, continuous wave (cw) lasers. Our interest is in the behavior of the spa-
tially localized, coherent structures in this system -that is, in the formation, undulation,
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and interaction of self-focused filaments in this cw system. These strongly nonlinear
effects are distinctly different from traditional NLS (Kerr) nonlinear optics. Finally, one
strength of this project is its genuine interdisciplinary nature - with components from
experimental and theoretical physics, as well as from theoretical and computational
mathematics.

For most materials, the coefficient which describes the strength of the light-matter
interaction is very small, and high powered pulsed lasers are required to generate interest-
ing nonlinear effects. In contrast, in nematic liquid crystals[20] the nonlinear coefficient
can be extremely large (106 - -10"° times greater than in a typical optical media such as
CS2 ), thus permitting experimental investigation of a strongly self-focused optical system
using continuous-wave (CW) moderate power (1-10 W) lasers. In contrast with weakly
nonlinear optical systems, which are adequately described by nonlinear Schroedinger
(NLS) equations, the mathematical theory of nematic optics involves strong coupling
between the electromagnetic and nematic director (molecular orientation) fields. One of
our principle results is to show that this coupling produces an unusual optical system
with striking behavior.

Our emperiments [1] [2] on light- nematic interactions have been performed in several
geometries - - film, spherical droplets, and cylindrical - with several different liquid
crystals -MBBA, 6CB, and E209. In cylindrical geometry, the experiment observes
the self-focusing of a laser beam in a nematic-filled capillary tube. The cylindrical
configuration permits effective cooling, as well as a striking longitudinal visualization of
the transverse structures, a view which is invaluable for corroboration of experiment and
theory. The transverse confinement of the nematic effectively creates a highly nonlinear
waveguide within which the optical beam undergoes a cascade of complex transverse
structures with increasing input intensity. Critical features of the observed sequence
include the formation of a focal spot, the onset of transverse beam undulations, and,
most striking, a beautiful longitudinal view of the formation and interaction of multiple
beam filaments.

In our theory we have developed a coupled nonlinear field description of the essential
physics of nematic self-focusing. We begin from the time-dependent theory for liquid
crystal optics which, in the absence of fluid flow, involves the Maxwell equations for the
electric field E coupled to a nonlinear parabolic equation for the director n, a field of unit
vectors which describes the local molecular orientation (5]. We immediately idealize to
a time independent director field, a time- averaged electric field, and a two-dimensional
(planar) geometry. We then nondimensionalize, scaling all lengths on the transverse
width of the "tube", and the electric field intensity on the "Frederiks transition length"
[5]. With this scaling the experimental value of the (dimensionless) optical wave number
is very large - k = 1.4 x 10i. Thus, we replace the Maxwell equations by their geometrical
optics approximation:

0 = (Fi4+Gi)expikS (1.1)
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n = sin O +cos0O. (1.2)

Here the scalar fields F(x, z) and G(x, z) represent transverse and longitudinal electric
field components and O(z, z) is the angle of nematic rotation. After these approximations,
we are left with

1. An eikonal equation for the phase function S(z, z);

2. A vector transport equation for the field amplitudes F(x, z) and G(x, z);

3. A nonlinear elliptic equation for the angle of nematic rotation O(x, z).

The latter nonlinear elliptic equation for O(z, z) is coupled to the field amplitudes F(x, z)
and G(m, z).

In both our experiments and in initial numerical computations, we observe two
distinct transverse length scales. Mathematically, this separation of scales allows a
boundary-layer reduction of the fundamental geometrical optics equations into two sim-
pler systems - - an outer problem which describes the large-scale beam interactions with
the nematic, and an inner equation which models the filamented structure of the optical
beam.

First, in [2], [14) [13], we used a scalar model problem to illustrate the above boundary
layer strategy, showing the effects of filamentation and undulation. Then, in [11], we
extended the same strategy to the vector system of the two-dimensional (planar) model.
Most recently, we have studied [121 numerically "transient" effects (in the longitudinal
coordinate z). In this numerical study, we have identified caustics in the self focusing
process as the source of the filaments which were observed in the numerical experiments.

1.2 Propagation in Random, Nonlinear Media

McLaughlin, working with Michael Shelley and a graduate student, Jared Bronski, has
been studying the effects of randomness on nonlinear propagation. For example, does
the random phenomena of localization survive nonlinearity? Can many instabilities in a
deterministic system produce an effective randomness and, if so, how can the effect be
described analytically?

Localization is the striking effect that in a one dimensional, linear media of infinite
length, any amount of randomness prohibits propagation. For linear Schroedinger equa-
tions with random potential, the phenomena is well known and has been established
rigorously in the mathematical physics literature. In the presence of both nonlinearity
and randomness, almost nothing is known mathematically [6] [9]. Shelley [19] has re-
cently carried out some careful numerical studies of discrete NLS in the presence of a
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random potential, which show striking, yet distinct, phenomena in the defocusing, linear,
and focusing cases.

Our group has concentrated upon behavior in nonlinear Schroedinger systems, some-
times in the presence of random potentials and sometimes in a deterministic setting with
many instabilities. In particular, we are investigating the combined effects of nonlinearity
and randomness.

The work of Devillard and Souillard is one of the few rigorous results on nonlinear
localization. Devillard and Souillard consider time harmonic solutions to a nonlinear
Schroedinger equation with a random potential subject to the fixed output boundary
conditions:

io = _,.+V 'W1+'Jp

O(X)t) =exp(-ik2t)F(a,),

so that F satisfies the ODE

k2F = -F., + V(z,w)F + 1F812F.

They are able to show that in the fixed output formulation localization occurs a.s. - that
the transmission approaches 0 as L --+ co. The decay of F is algebraic (like L- 1) in the
case of a focusing nonlinearity rather than exponential as is the case with localization in
the linear (15 - 0) case.

Having established localization, a fair question to ask is whether these particular
solutions which exhibit localized behavior are physically observable. The numerical ex-
periments of Shelley, et. al. looked at the full time evolution of an plane wave incident
on a nonlinear, random slab. They found the evolution of an incident plane wave dif-
fered markedly from a time-harmonic solution. In the focusing case (P < 0) the solution
at long times consisted of many soliton-like wave packets bound to local minima of
the random potential. The temporal spectrum of the long time solution was far from
monochromatic. This result was not unexpected in light of the well known modulational
instability of the focusing NLS. In the defocusing case (15 > 0) the long time result was
much more interesting - the wave-function at long times shaped itself to look like the
random potential. More precisely, the long time behavior of an incident plane wave with
frequency k2 was

10kt't)12 ; -_V(X)
so that there was no localization. Interestingly the temporal spectrum, after an initial
transient, settled down to something nearly monochromatic. The nonlinear evolution
somehow selected an atypical time harmonic solution.

The numerical results of Shelley, Newell and Caputo [8] seem to indicate that the time
harmonic solutions considered by Devillard and Souillard may not be dynamically stable
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and are thus probably not physically observable. Bronski established this instability as
a part of his thesis work [3]. He cai -;ed out a linear stability analysis and showed that
the unstable eigenvalues are isolate., (point spectrum) and correspond to eigenfunctions
which vanish at infinity. He obtained explicit bounds which show that any unstable
eigenvalues must lie in a certain bounded region of the complex plane determined by F
and V, similar to the Howard semicircle in the theory of hydrodynamic stability. He
currently lacks any sufficient condition which would guarantee the existence of unstable
eigenvalues; however, by numerically solving the eigenvalue problem, he has shown that in
the typical situation both the focusing and the defocusing case have unstable eigenvalues.
This is interesting since neither defocusing nonlinearity nor randomness are by themselves
sufficient to cause an instability. It is only through the interaction of the two terms that
instabilities arise.

Treating the nonlinear problem as a perturbation of the linear problem gives an ap-
pealing physical interpretation of these instabilities in terms of resonances. Resonances,
or virtual bound states, can be thought of as bound states with a finite lifetime (negative
imaginary part). In the linear problem the number of resonances grows with the length
of the disordered segment. When the length of the disordered segment is large there
are many resonances with very long lifetimes (small negative imaginary parts.) As the
length of the disordered segment goes to infinity these resonances collapse down onto the
real axis and become bound states. This is the idea behind Anderson localization.

The presence of nonlinearity changes the picture somewhat. The nonlinearity gives
rise to a non self-adjoint term in the eigenvalue problem. This non self-adjoint operator
can cause the resonances to cross the real axis and become unstable eigenvalues. As
pointed out by Pego and Weinstein[ 161 this mode of transition to instability is particularly
interesting because it is fundamentally infinite- dimensional. In a finite dimensional
eigenvalue problem where the analytic continuation of an eigenvalue is an eigenvalue
such a transition cannot occur. By numerically solving the eigenvalue problem we are
able to observe this sort of transition to instability actually occurring.

Since these resonances are associated with local minima in potential the effect of these
instabilities is to cause the solution to grow near these local minima. In the focusing
case this causes the minima to deepen, causing greater instability, causing the minima
to deepen further. This process continues until diffraction effects become important and
terminate the collapse. In the defocusing case, however, the process is different. The
instability leads to growth of the solution near local minima, which causes these minima
to become less deep, decreasing the instability. This process continues until the local
minima are all 'filled in.' This gives at least a heuristic explanation for ShelleyCaputo
and Newell's observation that the evolution of the random focusing NLS moves toward
soliton-like structures trapped in local minima of the potential, while the defocusing NLS
evolves to 'look like' the random potential.
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1.3 Polarization Instabilities

Polarization effects which arise as laser beams propagate along optical fibers are described
with coupled systems of nonlinear Schroedinger equations. These systems have solutions
with instabilities, some of the familiar modulational type which occurs for the scalar
NLS equation and others (called cross-polarization instabilities) which arise only in the
coupled system. Physically, these instabilities can produce striking effects such as "op-
tical shocking" [18] [17]. Mathematically, they are closely related to the "modulational
instability" as described in weakly nonlinear geometrical optics [4].

In certain special cases these coupled NLS equations are completely integrable soliton
equations which are integrated with a complicated (third-order, nonselfadjoint, ordinary
differential) eigenvalue problem. This third order integrable problem has instabilities
and hyperbolic structure analogous to that studied earlier by McLaughlin and Overman
for the NLS equation, and described in some detail in the survey article [10] which was
written under the support of this grant. In contrast to the scalar NLS case, in the coupled
system, instabilities arise in both the focusing and defocusing situations. We [15] have
been using this third-order nonlinear spectral transform to extend our understanding
of integrable hyperbolic structure [7] to this coupled NLS system. Mathematically, the
importance of the project is to understand hyperbolic structure for this third order
spectral problem which is far more complicated than the Zakharov- Shabat second order
problem for NLS. Physically the importance is to understand polarization instabilities
and the resulting phenomena in the propagation of polarized light along a nonlinear
fiber.

1.4 Coupled Bistable Optical Switches

In this area Yuchi Chen, a graduate student working with McLaughlin and Muraki,
has developed a numerical code for the study of bistable optical switches, transversely
coupled through both diffraction ,-, diffusion. The code is in two spatial dimensions
and in time, and includes longituuinal forward and backward propagation, transverse
diffractive coupling through the electromagnetic field, and transverse diffusive coupling
through the medium field. The bistable bifurcations of a single switch in this system
have been studied. Current work focuses upon coupled pixels.
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